

then x and z will also be work at the same place

Plot No. A-7, Street No. 23, Barkat Nagar Tonk Phatak, Jaipur-302015 (Rajasthan)

Relations And Functions \Rightarrow x R z means this relation is also transitive since the given relation is reflexive, symmetric, transitive hence it equivalence relation. Ans **(b)** $R = \{(x,y) : x \text{ and } y \text{ live in the same locality}\}$ **Sol. Reflexive** : $x R x \Rightarrow x$ and x live in the same locality. Thus it is always true. hence given relation is reflexive relation. **Symmetric :** $x R y \Rightarrow x$ and y live in the same locality. then y and x will also be live in the same locality $\Rightarrow y R x$ Hence it is symmetric relation. **Transitive** : \Rightarrow *y R x x*, *y* live in the same locality. *y* $R z \Rightarrow$ y, z live in the same locality. \Rightarrow then x and z will also be live in the same locality \Rightarrow *x R z* , Hence it is transitive relation. Ans (c) $R = \{(x,y): x \text{ is exactly 7cm taller then } y \}$ **Reflexive** : $x R x \Rightarrow x$ is 7cm taller then x, it is not possible. Any person can't be taller then himself mean relation is not reflexive $\Rightarrow x \not R x$ **Symmetric** : x R y = x is 7 cm taller then y. \Rightarrow y cannot be 7 cm taller then x. $y \not K x$, Hence the relation is not Symmetric. **Transitive** : $x R y \Rightarrow x$ is 7 cm taller then y.....(1) and $y R z \Rightarrow y \text{ is 7 cm taller then } z \dots (2)$ then x will be 14 cm taller then z. Hence x is not exactly 7 cm taller then $z \Rightarrow x \not R z$ given relation is not transitive. (d) $R = \{(x,y) : x \text{ is wife of } y\}$ **Sol Reflexive** : $x R x \Rightarrow x$ is the wife of x not possible. Hence the relation is not reflexive. **Symmetric** *x R* $y \Rightarrow x$ is the wife of y then y can't be the wife of x. \Rightarrow y will be the husband of x \Rightarrow Hence $v \not R \Rightarrow$ Relation is not Symmetric. **Transitive**: $x R \ y \Rightarrow x$ is wife of y $y R z \Rightarrow$ y is the wife of z, both these relation never true. hence relation is not transitive. Ans (e) $R = \{(x,y) : x \text{ is the father of } y\}$ **Sol. Reflexive** : $x R x \Rightarrow x$ is father of x. any person can't be father of himself hence given rela-

- **Symmetric** : $x R y \Rightarrow x$ is the father of y then y can't be the father of $x \Rightarrow y \not R x \Rightarrow$ not symmetric.
- **Transitive** : $x R y \Rightarrow x$ is the father of y.....(1)
 - and *y* $R z \Rightarrow$ y is the father of z(2)
 - then x will be the grand father of z

Hence x can't be the father of z. $\Rightarrow x \not R z$

Given relation is not transitive.

Ans

(2) Show that the relation R on the set of real numbers, defined as $R = \{(a,b): a \le b^2\}$ is neither reflexive nor Symmetric nor transitive.

[RBSE 2014; CBSE 2009 (F), Punjab B. 2013]

ive.

Symmetric: $a \ R \ b \Rightarrow a \le b^2$(1) and

$$b \ R \ a \Rightarrow b^2 \leq a \quad \dots (2)$$

Both equation never possible. hence the given relation is not Symmetric.

Transitive: $aRb \Rightarrow a \le b^2$ (1)

and
$$bRc \Rightarrow b \le c^2$$
.....(2)

from equation (1) and (2),

 $\Rightarrow a \leq c^2 \Rightarrow a \not R c$, hence relation is not transitive. Ans

(3) Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as R = $\{(a,b) : b = a + 1\}$ is reflexive, symmetric or transitive. [CBSE 2007 (AI)]

Sol. Reflexive: $a R a \Rightarrow a = a + 1$, it is not possible

 $\Rightarrow a \not R a \Rightarrow$ given relation is not reflexive.

Symmetric: $aRb \Rightarrow b = a + 1....(1)$, $bRa \Rightarrow a = b + 1...(2)$

from equation (1) and (2) , a = (a+1)+1

 $a = a + 2 \implies 2 = 0$, not possible

 $a R a \Rightarrow b \not R a$ relation is not Symmetric.

Transitive: $a R b \Rightarrow b = a + 1 \dots (1) \& b R c \Rightarrow c = b + 1 \dots (2)$ From equation (1) and (2)

$$r = (a+1) + 1 = a + 2 \Longrightarrow c \neq a + 1 \Longrightarrow a \not R' c$$

hence given relation is not transitive.

Hence given relation is neither reflexive nor s y m metric nor transitive.

(4) Show that the relation R in R defined as $R = \{(a,b) : a \le b\}$ is reflexive and transitive but not symmetric.

[CBSE 2003(Delhi), 2001(Delhi), 2001(AI), H.B 2013, Kashmir 2011]

Sol. Reflexive: $a R a \Rightarrow a \le a \Rightarrow$ true when a = ahence, given relations is reflexive relation.

Symmetric: $a R b \Rightarrow a \le b$(1) & $b R a \Rightarrow b \le a$ (2)

both these relation will be satisfied only when a = b. Hence it is skew symmetric relation

Transitive: $a R b \Rightarrow a \le b$ (1)

& $bRc \Rightarrow b \leq c$ (2)

from equation (1) and (2) , $a \leq b \leq c$

 $a \le c \Rightarrow a R c$, hence the relation is transitive.

: Relation is reflexive, skew symmetric and transitive.

2024-25

tion is not reflexive.

Plot No. A-7, Street No. 23, Barkat Nagar Tonk Phatak. Jaipur-302015 (Rajasthan) 07597252693

hence it is **partial order relation**. Ans Check whether the Relation R in R defined by (5) $R = \{(a,b) : a \le b^3\}$ is reflexive, symmetric or transitive. [CBSE 2010, Jammu 2013]

Sol. $a R a \Rightarrow a \le a^3$ (not possible except a = 1)

Hence relation is not reflexive $\Rightarrow a \not R a$

Symmetric: $a R b \Rightarrow a \le b^3$ (1) &

 $b R a \Rightarrow b \leq a^3 \dots (2)$

both these relation not satisfied

- hence $a R b \Rightarrow b R a$, so given relation is not Symmetric.
- Transitive : and
 - $b R c \implies b \le c^3 \dots (2)$

from equation (1) and (2) , $a \leq (c^3)^3$

 $a \le c^9 \Rightarrow a \le c^3 \Rightarrow a \not R c$, so it is not transitive.

since given relation is neither reflexive, nor symmetric and not transitive

(6) Show that the relation R in the set {1, 2, 3} given by $R = \{(1, 2) (2, 1)\}$ is symmetric but neither reflexive nor transitive.

[CBSE 2004(Delhi),2003(AI), 2011]

Sol. Reflexive: $(1,1) \notin R$, hence R is not reflexive relation.

- **Symmetric**: $R^{-1} = \{(2,1) \ (1,2)\} \Rightarrow R = R^{-1}$, hence R is symmetric relation.
- **Transitive**: $(1,2) \in R, (2,1) \in R \Longrightarrow (1,1) \notin R$

Hence the relation is not Transitive. since the given relation is not reflexive, symmetric and not transitive.

- (7) Show that the relation R in the set A of all the books in a library of a college, given by $R = \{(x,y) : x \text{ and } y \text{ have } \}$ same number of pages} is an equivalence relation.
- **Sol. Reflexive:** $x R x \Rightarrow x$ and x have same number of \Rightarrow pages true for each x. hence relation is reflexive.
- **Symmetric :** $x R y \Rightarrow x$ and y have same number of page \Rightarrow

y and x have same no of page $\Rightarrow y R x$

hence, given relation is symmetric relation.

- **Transitive** : $x R y \Rightarrow x \& y$ have same number of page,
 - $y R z \Rightarrow$ y and z have same number of page.
 - Then x and z will also have same number of page

 $\Rightarrow x \ R \ z \Rightarrow$ transitive relation.

 \therefore R is reflexive, symmetric and transitive .

- hence it is equivalence relation. Ans
- (8) Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given

by $R = \{(a,b) : |a-b| \text{ is even}\}$ is an equivalence relation. Show that all the elements of {1, 3, 5} are related each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}. [CBSE 2009(Delhi)]

Sol. Reflexive: $a R a = |a - a| = 0 \Rightarrow$ even integer.

hence it is reflexive relation.

Symmetric:
$$a R b \Rightarrow |a-b| = \text{even integer} = 2k \{k \in Z(let)\}$$

 $\Rightarrow |b-a| = |-(a-b)| = |-2k| = 2k$ even integer $\Rightarrow b R a$

hence given relation is symmetric relation.

2nd method : $R = \{(1,3)(1,5)(2,4)(3,5)(3,1)(5,1)(4,2)(5,3)\}$

$$R^{-1} = \{(3,1)(5,1)(4,2)(5,3)(1,3)(1,5)(2,4)(3,5)\}$$

 \therefore $R = R^{-1}$, hence given relation is symmetric.

$$bRc = |b-c| = \text{even integer} = 2k_2$$
....(2)

$$a-c \models a-b+b-c \models a-b \mid + \mid b-c \mid = 2k_1+2k_2$$

 $\mid a-c \mid = 2(k_1+k_2) = \text{even integer} \implies a Rc$

hence the given relation is transitive. It is reflexive, symmetric, transitive relation .hence it is equivalence relation. Ans

- (9)Show that each of the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by
- $R = \{(a, b) : | a b | \text{ is a multiple of } 4\}$ [CBSE 2010 (AI)] (i)
- (ii) $R = \{(a, b) : a = b\}$
- **Sol.** Set $A = \{x \in Z : 0 \le x \le 12\} = \{0, 1, 2, \dots, 12\}$,
- (i) $a \ R \ b \Rightarrow |a-b|$ will be multiple of 4 when 'a' and 'b' are the elements of set {1,5,9} . hence $R = \{(1,1) (5,5) (9,9) (1,5) (1,9) (5,1) (9,1) (5,9) (9,5)\}$

Reflexive : Each element of this set is related with itself . hence it is reflexive relation or

> $a - a = 0 = 0 \times 4$, multiple of $4 \Longrightarrow (a, a) \in R$ hence it is reflexive relation.

Symmetric: $R = R^{-1}$, hence R is symmetric.

Transitive : a R b = |a - b| multiple of $4 = 4k_1$ (Let)(1)

bRc = |b-c| multiple of $4 = 4k_2$ (Let)(2)

Ans

$$|a-c| = |a-b+b-c| = 4(k_1+k_2)$$
, multiple of $4 \Rightarrow aRc$

given relation is transitive relation .

Since the given relation is reflexive, symmetric, transitive hence it is **equivalence** relation. Ans

Sol(ii)
$$R = \{(a,b) : a = b\}$$

 $a = a \Rightarrow$ R is reflexive, $a = b \Rightarrow b = a$, R is symmetric

 $a = b, b = c \Rightarrow a = c$ R is transitive

Hence R is equivalence relation

(10) Given an example of a relation. Which is (i) Symmetric but neither reflexive nor transitive. (ii) Transitive but neither reflexive nor Symmetric. [RBSE 1999]

(iii) Reflexive and Symmetric but not transitive.

2024-25

CONVEX CLASSES Plot No. A-7, Street No. 23, Barkat Nagar Tonk Phatak, Jaipur-302015 (Rajasthan)

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive.Sol(i) solution see on Important example (9)Sol(ii) If relation R is defined on set of real number

such that $x R y \Rightarrow x > y$.

Reflexive :

 $x R x \Rightarrow x \neq x$, hence given relation is not reflexive.

Symmetric : $x R y \Rightarrow x > y \Rightarrow y \not R x$, not symmetric.

Transitive : $x R y \Rightarrow x > y, y R z \Rightarrow x > z$

 $x > y > z \Rightarrow x > z, x R z$, hence given relation is transitive.

since the given relation is transitive but neither reflexive nor symmetric.

Sol(iii) $a R b \Leftrightarrow 1 + ab > 0 \forall a, b \in R$

solution see on Important example (5)

Sol(iv) Solution see on Important example (2)

Sol(v) Reflexive: $x \ R \ x \Rightarrow 'x'$ is the brother of 'x' not true , any person can't be the brother of himself , hence given relation is not reflexive.

Symmetric: $x R y \Rightarrow x$ is the brother of y then

y will also be the brother of $x \Rightarrow y R x$

Transitive : $x R y \Rightarrow x$ is the brother of 'y'

 $y R z \Rightarrow 'y'$ is the brother of 'z' then 'x' will also be the

brother of 'z' \Rightarrow *x R z* transitive.

since the given relation is symmetric and transitive but not reflexive.

(11) Show that the relation R in the set A of points in a plane given by $R = \{(P,Q) : distance of point P from origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further,$

show that the set of all points related to point

 $P \neq (0, 0)$ is the circle passing through P with origin as centre.

Sol. Reflexive : $PRP \Rightarrow OP = OP$ true, hence the given relation is reflexive.

Symmetric: $PRQ \Rightarrow OP = OQ$

 $OQ = OP \Rightarrow QRP$ Transitive: $PRQ \Rightarrow OP = OQ$ (1)

& $QRS \Rightarrow OQ = OS$(2)

OP = OQ = OS, hence given relation is transitive.

since the given relation is reflexive, symmetric and transitive. hence it equivalence relation. Ans

(12) Show that the relation R defined in the set A of all triangle as $R = (T_i, T_2) : T_1$ is similar to T_2 }, is equivalence relation.

Consider three right angle triangles T_1 with sides 3,

4, **5**, T_2 with sides **5**, **12**, **13** and T_3 with sides **6**, **8**, **10**.

Which triangles among T_1 , T_2 and T_3 are related ? [CBSE 2008]

Sol. Given relation is $T_1 \ R \ T_2 \Rightarrow T_1$ is similar to T_2

Reflexive : $T_1 R T_1 \Rightarrow$ each triangle is similar to itself, hence given relation is reflexive relation.

Symmetric : If T_1 triangle is similar to T_2 then T_2 will also

be the similar to T_1 .

hence the given relation is symmetric.

Transitive : $T_1 R T_2 \Rightarrow \Delta T_1 \approx \Delta T_2$ (1)

and $T_2 R T_3 \Longrightarrow \Delta T_2 \approx \Delta T_3$ (2)

From equation (1) and (2),

 $\Delta T_1 \approx \Delta T_2 \approx \Delta T_3 \Longrightarrow \Delta T_1 \approx \Delta T_3 \Longrightarrow T_1 R T_3$

hence given relation is transitive relation. since the given relation is reflexive, symmetric and transitive. so it is called equivalence relation

(13) Show that the relation R defined in the set A of all

polygons as $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same num$ $ber of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

Sol. Reflexive: $P_1 \ R \ P_1 \Rightarrow P_1$ and P_1 have same number of sides it is true for all triangle. hence it is reflexive relation.

Symmetric: $P_1 \ R \ P_2 \Rightarrow P_1 \& P_2$ have same number of sides

then P_2 and P_1

also having equal number of side $\Rightarrow P_2 R P_1$, so it is symmetric relation.

Transitive: $P_1 R P_2 \Rightarrow P_1 \& P_2$ has equal side.

Let $P_2 \ R \ P_3 \Rightarrow P_2 \ \& \ P_3$, also having equal side then

 \Rightarrow P_1 & P_3 will also be equal number of side. \Rightarrow $P_1 R P_3$,

hence given relation is transitive . since the given relation is reflexive, symmetric and transitive . so it is called equivalence relation. Ans

(14) Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } \}$

 L_2 }. Show that R is an equivalence relation. Find

the set of all lines related to the line y = 2x+4. [CBSE 2010]

Sol. Reflexive: $L_1 R L_1 \Rightarrow L_1 || L_1$ each line is parallel to itself . hence given relation is reflexive.

Symmetric: $L_1 R L_2 \Rightarrow L_1 || L_2 \Rightarrow L_2 || L_1$

hence given relation is symmetric relation.

Transitive: $L_1 R L_2 \Rightarrow L_1 \parallel L_2 \dots \dots (1)$

and $L_2 R L_3 \Longrightarrow L_2 \parallel L_3 \dots (2)$

 $L_1 \parallel L_2 \parallel L_3 \Rightarrow L_1 R L_3$ relation is transitive.

CONVEX Plot No. A-7, Street No. 23, Barkat Nagar 2024-25 CLASSES Tonk Phatak, Jaipur-302015 (Rajasthan) 7597252693 since given relation is reflexive, symmetric and transitive, hence it is called equivalence relation. **Ans**

- (15) Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
- (A) R is reflexive and symmetric but not transitive.
- (B) R is reflexive and transitive but not symmetric.
- (C) R is symmetric and transitive but not reflexive.
- (D) R is an equivalence relation.
- **Sol. Reflexive** : $\{(1,1)(2,2)(3,3)(4,4)\} \in \mathbb{R}$ each element of this set is related to itself hence it is reflexive relation.

Symmetric : $(1,2) \in R$, $(2,1) \notin R$, \therefore R is not symmetric.

Transitive : $(1,3) \in R, (3,2) \in R \Longrightarrow (1,2) \in R$

hence **R** is transitive, relation R is reflexive, transitive but not symmetric . So it is **partical order** relation.

(16) Let R be the relation in the set N given by $R = \{(a,b): a = b-2, b > 6\}$

choose the correct answer.

(A) $(2,4) \in R$ (B) $(3,8) \in R$ (C) $(6,8) \in R$

(D)
$$(8,7) \in I$$

Sol. Given
$$a Rb \Rightarrow a = b - 2, b > 6$$

Let
$$b=6$$
, $a=b-2=6-2=4 \Rightarrow (4,6)$
Let $b=7$, $a=b-2=7-2=5 \Rightarrow (5,7)$
Let $b=8$, $a=b-2=8-2=6 \Rightarrow (6,8)$
 $R = \{(4,6)(5,7)(6,8),(7,9)(8,10)....\} \forall a, b \in N$
Ans [C]

Exercise 1.2 [NCERT]

(1) Show that the function f: R_{*} → R. defined by f(x) = 1/x is one-one and onto, where R_{*} is the set of all non-zero real numbers. Is the result true, if the domain R_{*} is replaced by N with co-domain being same as R_{*} ? [CBSE 2009 (AI)]

Sol. One-One/Many-one:
$$x, y \in R_0$$
 such that
 $f(x) = f(y)$ then $\Rightarrow 1/x = 1/y \Rightarrow x = y$
So, function is one - one.

Onto/into: $y = 1/x \Rightarrow x = 1/y$

This function is defined for each y except y = 0hence range = R_0 = Co-domain hence, function is onto.

Now, $f: N \to R$, f(x) = 1/x

Range =
$$f(N) = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\} \neq$$
co-domain

hence function is into.

(2) Check the injectivity and surjectivity of the following functions :

- (i) $f: N \to N, f(x) = x^2$ [CBSE 2004 (AI)]
- **Sol.** Given $f: N \to N$ and $f(x) = x^2$

where $N = \{1, 2, 3, 4,\}$ = set of natural numbers.

One-One/Many-one: Let $a, b \in N$ such that

f(a) =
$$f(b) \Rightarrow a^2 = b^2 \Rightarrow b = \pm a$$

$$b = -a$$
 not possible, hence $b = a$ is only solution

so, $f(a) = f(b) \Rightarrow a = b \ \forall a, b \in N$

so, f is one-one mapping.

Onto/Into:

Э

$$x = 1, y = 1^{2} = 1, x = 2, y = 2^{2} = 4, x = 3, y = 3^{2} = 9$$

so
$$f(N) = \{1^2, 2^2, 3^2, 4^2, ...\} =$$
 Range of f

hence, range \subset co-domain (function is into) hence function is one-one into. **Ans**

(ii) $f: Z \to Z$ given by $f(x) = x^2$ [CBSE 2005 (Delhi)]

Sol.One-One/Many-one :

 $f(x) = f(y) \Longrightarrow x^2 = y^2 \Longrightarrow x = \pm y$

y = x, -x two values of x,

hence it is many -one mapping.

e.g.,
$$x = 1$$
, $f(1) = 1^2 = 1$, $x = -1$, $f(-1) = (-1)^2 = 1$

 $1 \neq -1$, f(1) = f(-1), function is many one.

2nd method :
$$x \neq (-x) \Rightarrow (x)^2 = (-x)^2 \Rightarrow f(x) = f(-x)$$

hence function is many-one.

Onto/Into:
$$x \in Z, x^2 \in Z^+ \Rightarrow y \in Z^+$$

hence Range = $\{0, 1, 2, 3, \dots\}$

o-domain = {.....
$$-3, -2, -1, 0, 1, 2, 3, \dots$$
}

·: Range ⊂ co-domain

so function is into, hence function is many- one into . Ans

(iii)
$$f: R \to R$$
, $f(x) = x^2$ [IIT 1970; MPPET 1997]

Sol. One-One/Many-one: $\therefore x \neq -x \Rightarrow x^2 = f(x) = f(-x)$ function many-one.

Onto/Into: $x \in R$ so $x^2 \in R^+ \Rightarrow y \in R^+$ so, Range = R^+ Co-domain = R, \therefore Range \subset Co-domain So, function is into.

hence function is many -one into. Ans

(iv) $f: N \to N$ given by $f(x) = x^3$

Sol. One-One/Many-one : $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$

hence it is one one mapping

94144

Plot No. A-7, Street No. 23, Barkat Nagar Tonk Phatak, Jaipur-302015 (Rajasthan) **Onto/Into:** Put x = 1, $f(1) = 1^3 = 1$,

Put
$$x = 2$$
, $f(2) = 2^3 = 2^3$

Put
$$x = 3$$
, $f(3) = 3^3 = 27$

hence Range = $\{1, 8, 27,\}$, co-domain = $\{1, 2, 3,\}$

- $\begin{array}{ll} \because \mbox{ Range } \subset \mbox{ co-domain hence function is into mapping} \\ & \mbox{ So, function is one-one into.} & \mbox{ Ans} \end{array}$
- (v) $f: Z \to Z$ given by $f(x) = x^3$
- **Sol. One-One/Many-one**: $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$

Hence function is one one .

Onto/Into: $f: Z \rightarrow Z$, $y = x^3$

$$x = (y)^{1/3}, y \in Z \Rightarrow y^{1/3} \notin Z \Rightarrow x \notin Z,$$

Function is into . Hence given function is one-one into. Ans (3) Prove that the Greatest Integer Function $f: R \rightarrow R$

- given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. [KCET 2004]
- **Sol. One-One/Manyone:** $x \neq y \Rightarrow [x] = [y] \Rightarrow f(x) = f(y)$

 $\therefore x \neq y \Longrightarrow f(x) = f(y)$

e.g., $1/2 \neq 1/3 \Rightarrow f(1/2) = 0 = f(1/3)$

hence this function is many one mapping.

Onto / Into : $y = [x], x \in R$

$$x \in R \Rightarrow [x] \in Z \Rightarrow y \in Z$$
, Range = Z

Co-domain = R, Range \subset co-domain , function is into Hence function is many-one into. Ans

(4) Show that the modulus Function $f : R \to R$, given by

f(x) = |x|, is neither one-one nor onto, where |x| is

x, if x is positive or 0 and |x| is -x, if x is negative.

Sol. One-One/Many-one: $x \neq -x \Rightarrow |x| = |-x|$

 \Rightarrow f(x) = f(-x), hence it is many one mapping

Onto/Into: $x \in R \Rightarrow |x| \in R_+$

Range R_+ , co-domain= RRange \subset co-domain \Rightarrow into mapping.Hence function is many one into.Ans

(5) Show that the Signum Function $f: R \to R$, given

 $\mathbf{by}^{f(x)=\begin{cases} 1, x>0\\ 0, x=0\\ -1, x<0 \end{cases} \text{ is neither one-one nor onto.}$

Sol. One-One/Many-one: Case I : If x > 0, Let $x_1, x_2 \in \mathbb{R}^+$

 $x_1 \neq x_2$, $f(x_1) = f(x_2) = 1$, hence function

is many one

0

e.g., $1 \neq 2 \Longrightarrow f(1) = f(2) = 1$

- **onto/into**: Range = $\{-1, 0, 1\}$, co-domain = R Range \subset co-domain \Rightarrow function is Into mapping, hence function is many-one into. **Ans**
- (6) Let A = $\{1, 2, 3\}$, B = $\{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one. [CBSE 2011 (AI)]
- **Sol.** $f = \{(1, 4), (2, 5), (3, 6)\}$, No second element repeated hence function is oneone. **Ans**
- (7) In each of the following case, state whether the function is one-one, onto or bijective.Justify your answer.
- (i) $f: R \to R$ defined by f(x) = 3 4x

Sol. One-One/Many-one : Let f(x) = f(y)

 \Rightarrow 3-4x = 3-4y \Rightarrow x = y function is one one.

onto/into: $y = 3 - 4x \implies x = (3 - y)/4$

$$y \in R$$
, then $3 - y \in R \Rightarrow \frac{3 - y}{4} \in R \Rightarrow x \in R$

 \Rightarrow for each y there exist x in domain (R) so f(x) is onto.

Hence function is one one onto. Ans

(ii) $f: R \to R$ defined by $f(x) = 1 + x^2$

[Similar CBSE 2005 (D.B)]

Sol. One-One/Many-one : $f(x) = f(y) \Rightarrow 1 + x^2 = 1 + y^2$

 \Rightarrow *y* = ±*x* , Two values for *y* , hence function is many one.

Onto/into: $y = 1 + x^2 \Rightarrow x = \sqrt{1 - y}$

x will be defined when $1 - y \ge 0 \Rightarrow y \le 1$

Range = $(-\infty, 1]$, co-domain = R,

Range \subset co-domain \Rightarrow function is into .

Ans

6

Hence it is many one into .

(8) Let A and B be sets, Show that $f : A \times B \rightarrow B \times A$ such that f (a, b) = (b, a) is bijective function.

Sol. One-One/Many-one : Let
$$(a_1, b_1)$$
 and $(a_2, b_2) \in A \times B$

Such that
$$f(a_1, b_1) = f(a_2, b_2)$$

$$\Rightarrow (b_1, a_1) = (b_2, a_2) \Rightarrow b_1 = b_2, a_1 = a_2$$

so, $(a_1, b_1) = (a_2, b_2)$ hence

 $f(a_1,b_1) = f(a_2,b_2) \Longrightarrow (a_1,b_1) = (a_2,b_2)$

Hence function is one one or injective mapping. **Onto/into** : let (b, a) is an arbitrary element of $B \times A$

Then $b \in B$ and $a \in A$ hence $(a,b) \in (A \times B)$

then $(b,a) \in B \times A \Longrightarrow f(a,b) = (b,a) \in B \times A$

hence range = $B \times A$ = co-domain. function is onto. Given function is one-one onto (Bijection). Ans

(9) Let $f: N \to N$ be defined by

 $f(n) = \begin{cases} (n+1)/2 & \text{if n is odd} \\ n/2 & \text{it n is even} \end{cases}$ for all $n \in N$, State

whether the function f is bijective.

Justify your answer.

[CBSE 2012-2009(AI); AIEEE 2009; KCET 2014]

Sol. One -one/many -one : $f(1) = \frac{1+1}{2} = 1$, $f(2) = \frac{2}{2} = 1$

thus $1 \neq 2 \Rightarrow f(1) = f(2)$. So, f is many one function. **Onto/into:** $n \in \text{odd}$, $n+1 \in \text{even}$

 $\frac{n+1}{2}$ = integer , $f(n) \in$ integer ,

If $n \in \text{even}$, $n/2 \in \text{integer}$, $f(n) \in \text{integer}$

- hence the range of the function is = integer =co-domain So, *f* is surjective , hence *f* is many one onto. Ans
- (10) Let $A = R \{3\}$ and $B = R \{1\}$. Consider the function $f: A \rightarrow B$ defined by f(x) = (x-2)/(x-3). Is f one-one and onto? Justify your answer. [CBSE 2014 C (Delhi) ; 2012(Delhi) ,2006(Delhi);

RBSE 2012]

Sol. One -one/many -one:
$$f(x) = f(y) \Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

 $\Rightarrow (x-2)(y-3) = (y-2)(x-3)$

$$\Rightarrow xy - 2y - 3x + 6 = xy - 2x - 3y + 6 \Rightarrow x = y$$

 $\therefore f(x) = f(y) \Rightarrow x = y.$

Hence *f* is one one mapping.

Onto/ into:
$$y = \frac{x-2}{x-3} \Rightarrow xy-3y = x-2$$

$$(y-1)=3y-2 \implies x=\frac{3y-2}{y-1}$$

This function is not defined for y = 1 only.

Hence Range = $R - \{1\}$ = co-domain.

function is onto. Hence function is one one onto (bijective). Ans

(11) Let $f: R \to R$ be defined as $f(x) = x^4$.

Choose the correct answer.

(A) f is one-one onto

[CBSE 2006(AI)]

(C) f is one-one but not onto

(D) f is neither one-one nor onto.

Sol. One one/ many one : $x \neq -x \Rightarrow x^4 = (-x)^4$

 $\Rightarrow f(x) = f(-x)$, Hence f is many one

Onto/ into: $x \in R$, $x^4 \in R_{\perp}$, $f(x) \in R_{\perp}$

Range = R_{+} , co-domain = $R \implies$ Range \subset co-domain

- Hence function is into. So given function is many-one into (bijective) Ans
- (12) Let $f : R \to R$ be defined as f(x) = 3x. Choose the correct answer. [Similar CBSE 2008 (AI); PB 2010] (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto

Sol. One one/ many one: $f : R \to R$, f(x) = 3x

$$f(x) = f(y) \Rightarrow 3x = 3y \Rightarrow x = y$$
, one-one mapping

Onto/into: $y=3x \Rightarrow x = y/3$

$$v \in R \Longrightarrow \frac{y}{3} \in R \Longrightarrow x \in R$$

 \therefore for each y there exist x in domain

hence function is onto. so function is one-one onto (bijection). Ans

Miscellaneous Exercise

- (1) Let $f: R \to R$ be defined as f(x) = 10x + 7.
- Find the function $g: R \to R$, such that $gof = fog = 1_R$ [CBSE 2011(AI)]
- **Sol.** f(x) = 10x + 7, Put g(x) at the place of x

$$f[g(x)]=10g(x)+7$$
 given $fog(x)=x$

then
$$10g(x) + 7 = x$$
, hence $g(x) = (x-7)/10$ Ans

(2)) Show that the function $f: R \to R$ given by $f(x) = x^3$ is injective. [Similar RBSE 2000]

Sol.one one/ many- one : $f(x) = x^3$

$$f(x_1) = f(x_2) \Longrightarrow x_1^3 = x_2^3 \Longrightarrow x_1 = x_2$$

hence f is one one , or 'f' is injective . Ans

(3) Given a non empty set X, consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows : For subset A, B in P(X) . ARB if and only if

 $A \subset B$. Is R an equivalence relation on P(X)? justify your answer.

Sol. Given relation $ARB \Rightarrow A \subset B \forall AB \in P(X)$

Reflexive: $ARA \Rightarrow A \subset A$, each set is the subset of itself, hence **R** is reflexive relation.

 $ARB \Rightarrow A \subset B$(1) Symmetric:

Transitive

and $BRA \Rightarrow B \subset A$(2)

Both these relation can't be satisfying till A = BHence given relation is not symmetric.

Plot No. A-7, Street No. 23, Barkat Nagar Tonk Phatak. Jainur-302015 (Rajasthan) (9414459793

(B) f is many-one onto

 $ARB \Rightarrow A \subset B$(1) and

2024-25

CONVEX

Relations And Functions	႞ၜ႞		
$BRC \Rightarrow B \subset C$ (2)	(A) 1	(B) 2	(C) 3 (D) 4
$A \subset B \subset C \Rightarrow A \subset C \Rightarrow ARC$			[CBSE 2011 (Defni)]
Hence given relation is transitive.	Sol. $A = \{1, 2\}$	$B = \{1, 3\}$	
Since R is reflexive, Skew symmetric and transitive	$R = \{(1,1) (1,3) (2,1) (1,2) (3,1) (2,2)\}$ Reflexive and symmetric not transitive . Ans		
(4) Find the number of all onto function from the set			
(4) Find the number of an onto runction from the set $[1, 2, 3, \dots, n]$ to itself	(7)Let A={1,2,	3} , then numb	er of equivalence relation con-
Sol. If function is defined as	taining (1,2) is	
$f: X \to Y , X = Y = \{1, 2, 3, \dots, n\}$	(a) 1	(b)	2 (c) 3 (d) 4
one of the element of set Y (say 1) may have any	Sol. Given tr	reflexive . svm	metric and transitive.
one of the pre-images 1, 2, 3 n, i.e., in n ways.	The sma	llest equivaler	nce relation containing $(1,2)$ is
the second element (say 2) will have the pre-images in	$R_{i} = \{(1, 1)\}$	(1)(2,2)(3,3)(1,2))(2.1)}
(n-1) ways .	Now . if	we add one p	air (2.3) then we must have to
\therefore the number of ways we can have the	add (3,2)		
pre-images $n \times (n-1)(n-2)3.2.1 = n!$	Since rel	ation is symme	etric , hence another relation is
hence total number of one one onto mapping defined	$R_2 = \{(1,1)(2,2)(3,3)(1,2)(2,1)(2,3)(3,2)\}$		
from X to Y is n!.	Now , if	we add one pa	air (1,3) then we must have to
(5) Let $A=\{-1, 0, 1, 2\}$, $B=\{-4, -2, 0, 2\}$ and $f, g: A \to B$ be	add (3,1)	l.	
functions defined by $f(x) = x^2 - x$ $x \in A$	Since rel	ation is symme	etric, hence another relation is
and $g(x) = 2\left x - \frac{1}{2}\right - 1, x \in A$.	$R_3 = \{(1,1)(2,2)(3,3)(1,2)(2,1)(1,3)(3,1)\}$ Hence this show that the total number of equivalence relation containing $\{1,2\}$		
Are f and g equal ? Justify your answer.			
Sol If f g: (1) P f (y) = y ² y g(y) = 2 y ^{1}			
Sol. If $f, g, A \to B, f(x) = x - x, g(x) = 2 \left x - \frac{1}{2} \right ^{-1}$			
where $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$			
two function will be equal function if domain . co-do-			
main and range of function are equal			70
at $x = -1$, $f(-1) = (-1)^2 - (-1) = 2$,			
			Y
$\sigma(-1) = 2 \begin{vmatrix} -1 & -1 \\ -1 & -1 \end{vmatrix} = 2 \begin{vmatrix} 3 \\ -1 & -1 \end{vmatrix} = 2$			

 $g(0)=2\left|0-\frac{1}{2}\right|-1=1-1=0$ $\left(\frac{1}{2}\right)$ at $x=1, f(1)=(1)^2-1=0, g(1)=2$ 1-**NTSE KVPY** 2 at x=2, $f(2)=(2)^2-2=2$, $g(2)=2\left|2-\frac{1}{2}\right|-1=2\left(\frac{3}{2}\right)-1=2$

Range of $f = \{0, 2\} =$ Range of g

2

at x = 0, $f(0) = (0)^2 - 0 = 0$

 $f(x) = g(x) \forall x \in A$,

hence the range of both functions are equal. so both given functions are equal function. Ans

Let $A = \{1, 2, 3\}$. Then number of relations containing (6) (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

Plot No. A-7, Street No. 23, Barkat Nagar Tonk Phatak, Jaipur-302015 (Raiasthan)

